Exercise 10

Use $i=(0,1)$ and $y=(y, 0)$ to verify that $-(i y)=(-i) y$. Thus show that the additive inverse of a complex number $z=x+i y$ can be written $-z=-x-i y$ without ambiguity.

Solution

Evaluate the left side.

$$
\begin{aligned}
-(i y) & =-[(0,1)(y, 0)] \\
& =-[(0-0, y+0)] \\
& =-(0, y)
\end{aligned}
$$

Evaluate the right side.

$$
\begin{aligned}
(-i) y & =(0,-1)(y, 0) \\
& =(0-0,-y+0) \\
& =(0,-y) \\
& =-(0, y)
\end{aligned}
$$

Consequently, it doesn't matter whether $-z$ is written as $-x+(-i) y$ or $-x-(i y)$ or $-x-i y$.

